# 法向導數的英文

###### 英文翻譯手機版
• noral derivative
• normal derivative
###### 例句與用法
• This paper uses compare principle to show that there exists at most one of classical solution for ( 1 ) , while the existance of solution is obtained through continuous method . to get the required a priori estimates except the double normal derivatives , we adopt the method in [ 3 ] , and the double normal derivatives on dq are achieved by barrier constructions and applying skill of [ 2 ]
本文用比較原理證明了問題( 1 )至多存在一個古典解，應用連續性方法，得到了問題( 1 )古典解的存在。在得到所需的先驗估計時，利用了[ 3 ]中的方法建立了除去邊界二階法向導數外的先驗估計，通過構造閘函數，用[ 2 ]中的技巧得到在邊界(
• Finally , in the third section , by constructing some functional which similar to the conservation law of evolution equation and the technical estimates , we prove that in the inviscid limit the solution of generalized derivative ginzburg - landau equation ( ggl equation ) converges to the solution of derivative nonlinear schrodinger equation correspondently in one - dimension ; the existence of global smooth solution for a class of generalized derivative ginzburg - landau equation are proved in two - dimension , in some special case , we prove that the solution of ggl equation converges to the weak solution of derivative nonlinear schrodinger equation ; in general case , by using some integral identities of solution for generalized ginzburg - landau equations with inhomogeneous boundary condition and the estimates for the l ~ ( 2 ) norm on boundary of normal derivative and h ~ ( 1 ) ' norm of solution , we prove the existence of global weak solution of the inhomogeneous boundary value problem for generalized ginzburg - landau equations
第三部分：在一維情形，我們考慮了一類帶導數項的ginzburg ? landau方程，通過構造一些類似于發展方程守恒律的泛函及巧妙的積分估計，證明了當粘性系數趨于零時， ginzburg ? landau方程的解逼近相應的帶導數項的schr ( ? ) dinger方程的解，并給出了最優收斂速度估計；在二維情形，我們證明了一類帶導數項的廣義ginzburg ? landau方程整體光滑解的存在性，以及在某種特殊情形下， gl方程的解趨近于相應的帶導數項的schr ( ? ) dinger方程的弱解；在一般情形下，我們討論了一類ginzburg ? landau方程的非齊次邊值問題，通過幾個積分恒等式，同時估計解的h ~ 1模及法向導數在邊界上的模，證明了整體弱解的存在性。